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This course notes are made for the course Probability & Measure (WBMA024-05) of the
University of Groningen during the academic year 2022-2023. The course is held by prof. dr.
J.P. (Pieter) Trapman, and followed the lecture notes made by de Snoo and Winkler, n.d.
This document is a summary of the course and do not substitute the corresponding lecture
notes.

To complete this course notes, I have also used Williams, 1991 and Durrett, 2019.

2 Introduction

Measure and integration offers a general approach to the theory of integration based on
measure theory. The starting point is an abstract framework through the study of collections
of sets having desirable properties (the so-called sigma-algebras), and of real-valued functions
defined on these collections (the measures themselves). From this, one defines measurable
functions, integrable functions and the Lebesgue integral. This is a far reaching extension of
the well known theory of Riemann integration. The approach via measures provides a wide
variety of applications: in particular about the interchange of various limiting procedures.
Also, a connection with functional analysis is provided via the introduction of spaces of
Lebesgue integrable functions. The course explores connections with probability theory and
includes the mathematical concepts needed to understand stochastic processes.

3 Algebras and Measures

We begin with a formal definition of what a measure space is. The idea is that we will have
a triple (Ω,A, µ) where Ω is the space, A is particular collection of subset of Ω and µ is he
‘measure’, hence a function used to compute the measure, i.e, the ‘size/volume’, of a set.

Definition 1 Algebra A collection A of subsets of a set Ω is an algebra (or field) if

(1) Ω ∈ A;

(2) A ∈ A ⇒ Ac ∈ A;

(3) A,B ∈ A ⇒ A ∪B ∈ A.

Note that in algebra one has

1. ∅ = Ωc ∈ A;

2. A,B ∈ A ⇒ A ∩B = (Ac ∪Bc)c ∈ A;

3. A,B ∈ A ⇒ A\B = A ∩Bc ∈ A

Definition 2 Measure A finitely additive measure µ on an algebra A us an extended real-
valued function µ : A → [0,∞] which satisfies

1. µ(∅) = 0;
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2. A,B ∈ A pairwise disjoint ⇒ µ(A ∪B) = µ(A) + µ(B)

Definition 3 σ-algebra A collection of A of subset of a set Ω is a σ-algebra (or σ-field) if

1. Ω ∈ A;

2. A ∈ A ⇒ Ac ∈ A;

3. An ∈ A, n ∈ N⇒ ∪∞n=1An ∈ A

Example: The collection A = {∅,Ω is the smallest σ-algebra with respect to Ω, and the
power set is larger σ-algebra with respect to Ω.

Definition 4 Measure on an σ-algebra A finitely additive measure µ on an algebra A us
an extended real-valued function µ : A → [0,∞] which satisfies

1. µ(∅) = 0;

2. An ∈ A pairwise disjoint ⇒ µ(∪∞n=1An) =
∑∞

n=1 µ(An)

Remark: Let An ∈ Ω, n ∈ N, and define the subsets

A′
1 = A1, A′

n = An\(A1 ∪ · · · ∪An−1), n ≥ 2

Then the sets A′
n are pairwise disjoint and their countable union is equalt to the correspond-

ing countable union of An.

Definition 5 Measurable space A measurable space (Ω,A) a set Ω provided with a σ-
algebra A on Ω. The elements of A are called measurable sets.

Definition 6 Measure space A measure space is a triple (Ω,A, µ) consisting of a set Ω, a
σ-algebra A on Ω, and a measure µ. The space is finite if µ(Ω) <∞.

Definition 7 Probability space A probability space is a measure space with µ(Ω) = 1.

3.1 Generators of σ-algebra

There are multiple ways to construct σ-algebra on a set Ω. A typical way is to define a
σ-algebra given a collection of subset.

Theorem 8 The intersection of a nonempty family of σ-algebra on a set Ω is a σ-algebra.

Proposition 9 Let D be a collection of subset of a set Ω. Then there is precisely one σ-
algebra A such that

• D ∈ A;

• if B is a σ-algebra with D ⊂ B, then A ⊂ B

Definition 10 Generator Let D be a collection of subset of a set Ω. The unique σ-algebra
in the previous proposition is said to be generated by D, denoted by σ(D), and D is said to
be the generator of this σ-algebra.

Remark: A σ-algebra A can be generated by different collection of subsets of Ω.
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3.1.1 Borel σ-algebra

Definition 11 Let Ω be a topological space. The σ-algebra generated by all open sets of Ω is
the Borel σ-algebra B(Ω).

Proposition 12 The Borel σ-algebra B on R is generated by

• the collection of closed subsets in R;

• the collection of intervals (−∞, b] b ∈ R;

• the collection of intervals (a, b], a, b ∈ R and a < b.

Moreover, the Borel σ-algebra Bd on Rd is generated by

• the collection of closed subsets;

• the collection of half-spaces;

• the collection of rectangles

3.1.2 π-systems and d-systems

Definition 13 π-system A π-system, A, is a set containing ∅ with the property that if
A,B ∈ A then A ∩B ∈ A.

Definition 14 d-system A d-system, or Dynkin system, A, is a collection of subsets of Ω
such that

• Ω ∈ A;

• A ∈ A ⇒ Ac ∈ A;

• An ∈ A, n ∈ N pairwise disjoint ⇒ ∪∞n=1An ∈ A

Remark: A σ-algebra A is a d-system which is closed under intersections (It holds in
both directions).

3.2 Completion of σ-algebra

Definition 15 A measure space (Ω,A, µ) is complete if every subset of a set of measure 0 is
measurable (and, hence, is itself a set of measure 0)

Definition 16 A measure space (Ω,B, ν) is said to extend a measure (Ω,A, µ) if A ⊂ B and
ν(E) = µ(E) for all E ∈ A.
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3.3 Outer measures

Definition 17 Let Ω be a set and let P (Ω) be its power set. An extended real-valued function
µ∗ : P (Ω)→ [0,∞] is an outer measure on Ω if

• µ∗(∅) = 0;

• A ⊂ B ⇒ µ∗(A) ≤ µ∗(B);

• An ∈ Ω, n ∈ N⇒ µ∗(∪∞n=1An) ≤
∑∞

n=1 µ
∗(An)

Definition 18 Let µ∗ be an outer measure on Ω. A set A ⊂ Ω is measurable with respect to
µ∗ if for any set Z ⊂ Ω

µ∗(Z) = µ∗(Z ∩A) + µ∗(Z ∩Ac)

3.4 Lebesgue measure

Lebesgue measure is probably the most famous and fundamental measure. It is a measure on
Rd and is that which corresponds to our intuitive idea of how bit a set is. In 1-D it is defined
by

µ([a, b]) = b− a

Definition 19 Lebesgue measure Let A ⊂ Rd. Then µ(A) ∈ [0,∞] is defined by

µ(A) = inf

{ ∞∑
n=1

l(Rn) : Rn ⊂ Rd closed rectangle, A ⊂
∞⋃
n=1

Rn

}
, where l(R) is the volume of R.

Remark: The rectangles Rn, n ∈ N, form a cover of A and µ(A) is the infimum of the
total volumes

∑∞
n=1 l(Rn) of all possible covers Rn

Lemma 20 Let the Lebesgue outer measure µ and let R ⊂ Rd be a closed rectangle with
volume l(R). Then

µ(R) = l(R)

Proposition 21 Every closed rectangle in Rd is Lebesgue measurable.

Corollary 22 Every open set in Rd is Lebesgue measurable.

Corollary 23 Every Lebesgue measure on Rd is σ-finite.

Proposition 24 Let A ⊂ Rd and let x ∈ Rd. Then the Lebesgue measure µ is invariant
under translation.
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3.4.1 Lebesgue-Stieltjes measure

3.5 Measure Theoretic Formulation of Probability

In Probability theory it is common to write the measure space as (Ω,A,P) with the additional
assumption that P(Ω) = 1. In this setting Ω is the set of all possible individual outcomes (of
the experiment, or random process), and A ∈ A are the measurable set called events. For an
example suppose we are going to toss a coin twice and we want to look at what results we
get. Our set is that of all possible sequences

Ω = {TT, TH,HT,HH}.

We can simply define the σ-algebra to be P (Ω). Then we can see that if we want to see the
probability of something occuring, for instance at least one head appearing, then this defines
a subset of Ω which is in A and we can find this probability,

P({At least one head appears}) = P({TH,HT,HH}).

4 Measurability of functions

Measurable functions are structure-preserving function between measurable spaces. An easy
example of measurable function are the random variables.

Definition 25 Let (Ω,A) and (Ω′,A′) be measurable spaces. The mapping f : Ω → Ω′ is
measurable, or, more precisely, (A,A′)-measurable, if f−1(A′) ∈ A for any A′ ∈ A

Remark: if two mappings are measurable, then the composition is also measurable.

Theorem 26 Let (Ω,A) and (Ω′,A′) be measurable spaces, ane let D be a generator for A′.
Then the following statements are equivalent:

• the mapping f : Ω→ Ω′ is measurable;

• f−1(E′) ∈ A for any E′ ∈ D

Proposition 27 Let Y be a topological space and let B(Y ) be the σ-algebra generated by the
open sets in Y . Let f be a mapping from the measurable space (Ω,A) to the measurable space
(Y,B(Y )). Then the following statements are equivalent:

• f is measurable;

• the set f−1(O) ∈ A for each open set O ∈ Y

Definition 28 Let f be a function from the measurable space (Ω,A) to R. Then f is called
measurable if f is measurable as a function from (Ω,A) to (R,B).

Remark: The Borel σ-algebra B = B(R) is also generated by half-open and half closed
intervals.

Corollary 29 The real-valued function f : (Ω,A) → (R,B) is measurable if and only if for
each c ∈ R on (and hence all) of the following assertions are satified:
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• {ω ∈ Ω : f(ω) < c} ∈ A

• {ω ∈ Ω : f(ω) ≤ c} ∈ A

• {ω ∈ Ω : f(ω) > c} ∈ A

• {ω ∈ Ω : f(ω) ≥ c} ∈ A

Definition 30 Let f be a mapping from the measurable space (Ω,A) to R2. Then f is called
measurable if f is measurable as a mapping from (Ω,A) to (R2,B2)

Proposition 31 Let f = (f1, f2) be a mapping from the measurable space (Ω,A) to R2. Then
f is measurable if and only if the functions f1 and f2 are measurable.

4.1 Measurable functions

Lets denote R and B the extended real line and the the corresponding Borel σ-algebra.

Proposition 32 Let f be an extended real-valued function from the measurable space (Ω,A)
to (R,B). Then the following statements are equivalent

• f is measurable;

• the set f−1(O) ∈ A for each open set O ⊂ R.

Corollary 33 The real-valued function f : (Ω,A) → (R,B) is measurable if and only if for
each c ∈ R on (and hence all) of the following assertions are satified:

• {ω ∈ Ω : f(ω) < c} ∈ A

• {ω ∈ Ω : f(ω) ≤ c} ∈ A

• {ω ∈ Ω : f(ω) > c} ∈ A

• {ω ∈ Ω : f(ω) ≥ c} ∈ A

Proposition 34 Let the extended measurable real-valued functions f, g : (Ω,A) → (R,B),
and let A ∈ A. Then the sets

{ω ∈ Ω : f(ω) < g(ω)}, {ω ∈ Ω : f(ω) ≤ g(ω)}, {ω ∈ Ω : f(ω) = g(ω)}

are measurable.

Proposition 35 Let f, g : (Ω,A) → (R,B) be measurable extended real-valued functions.
Then the maximum and the minimum of these functions are measurable.

Proposition 36 Let fn : (Ω,A) → (R,B) be a sequence of measurable extended real-valued
functions. Then also

sup
n∈N

fn, inf
n∈N

fn, lim sup
n∈N

fn, lim inf
n∈N

fn

are measurable extended real-valued functions from (Ω,A) to (R,B).
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Definition 37 Let (xn) be a sequence in R. Then

lim sup
n∈N

xn := lim
n→∞

(sup
r≥n

xr),

and
lim inf
n∈N

xn := lim
n→∞

( inf
r≥n

xr).

Corollary 38 Let (xn) be a sequence in R. Then

lim
n→∞

xn = l ⇔ lim inf
n∈N

xn = lim sup
n∈N

xn = l

Definition 39 Let Ω be a set. A sequence of extended real-valued functions fn : Ω → R
converges pointwise to an extended real-value function f : Ω → R if fn(ω) → f(ω) for all
ω ∈ Ω.

Proposition 40 Let (Ω,A) be a measurable space. Let the sequence of measurable real-valued
functions fn : Ω → R converges pointwise to an extended real-valued function f : Ω → R. If
all fn are measurable, then f is measurable.

Proposition 41 Let f, g : (Ω,A) → (R,B) be measurable extended real-valued functions.
Then the sum, multiplication and division among them are also measurable, on their domains
of definitions.

4.2 Random Variables

A random variable is a measurable function from a probability space. For example if we again
have the probability space generated by tossing a coin twice. Then if X counts the number
of heads, it is a random variable with landing space N with σ-algebra P (N) often the landing
space of a random variable is not made specific. In particular its σ-algebra may not be made
explicit. The random variable induces a measure on its landing space

µx = P ◦X−1

This is called the law of X.

In a more precise definition,

Definition 42 If (Ω,A,P) is a probability space and X : Ω → R is measurable, then X is
called a random variable. In general, if X : Ω → S, where (S,A) is a measurable space, we
call X a random quantity.

Theorem 43 Induced measure Let (Ω,A, µ) be a measure space and let (S,A) be a mea-
surable space. Let f : Ω→ S be a measurable function. Then f induces a measure on (S,A)
defined by ν(A) = µ(f−1(A)) for each A ∈ A.

Definition 44 Let (Ω,A,P) be a probability space and let (S,A) be a measurable space. Let
X : Ω→ S be a random quantity. Then the measure induced on (S,A) from P by X is called
the distribution of X.

8 /faculty of Science and Engineering
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So, let (Ω,A,P) and let a random variable X associated with this space. Then,

Ω
X−→ R

[0, 1]
P←−A X−1

←−−− B

[0, 1]
P←−σ(Ω) X−1

←−−− B

The law µX of X is defined by

µX = P ◦X−1

and the distribution function FX : R→ [0, 1] is defined as

FX(c) := µX(−∞, c] = P(X ≤ c) = P(X−1((−∞, c])) = P({ω : X(ω) ≤ c})

5 Approximation by simple functions

Simple functions are the building blocks of measurable function. Every nonnegative measur-
able function is the limit of simple function.

Definition 45 A real-valued function f : (Ω,A)→ (R,B) is called simple if f is measurable
and takes on only finite number of values.

Remark: If f : (Ω,A)→ (R,B) is simple and α1, . . . , αr ∈ R are its values then the sets

Ak = f−1(αk), k = 1, . . . , r,

are measurable and pairwise disjoint. Therefore the function f can be written as

f =
r∑

k=1

αk1Ak

Theorem 46 Let the extended real-valued function f : (Ω,A)→ (R,B) be measurable. Then
there exists a sequence of simple functions fn on Ω such that fn → f pointwise. Moreover,

1. if f is bounded, then the sequence converge uniformly;

2. if f ≥ 0, then the sequence fn may be chosen such that

fn ≥ 0, fn ≤ fn+1.

5.1 Properties which are valid almost everywhere

Definition 47 Let (Ω,A, µ) be a measure space. A property is said to hold almost everywhere
(a.e.) on Ω if it holds on a measurable set A ∈ A whose complement Ac has measure 0.

Lemma 48 Let (Ω,A, µ) be a measure space. Let f, g, and h be extended real-valued functions
from Ω to R, such that f = g a.e. and g = h a.e. Then f = h.

/faculty of Science and Engineering 9
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Lemma 49 Let (Ω,A, µ) be a measure space and let f and g be measurable extended real-
valued functions from Ω to R. Then

f = g a.e. ⇔ µ({ω ∈ Ω : f(ω) ̸= g(ω)}) = 0.

Remark: Let (Ω,A, µ) be a measure space. A sequence of extended real-valued functions
fn from Ω to R converges pointwise almost everywhere to an extended real-valued function
f from Ω to R, i.e.,

lim
n→∞

fn = f a.e.,

if there exists a set A ∈ A such that

fn(ω)→ f(ω), ω ∈ A

while µ(Ac) = 0.

Lemma 50 Let (Ω,A, µ) be a measure space and let fn and f be measurable extended real-
valued functions from Ω to R, then

lim
n→∞

fn = f a.e.⇔ µ({ω ∈ Ω : lim
n→∞

fn(ω) ̸= f(ω)}) = 0.

Theorem 51 Let (Ω,A, µ) be a measure space. Let f and g be extended real-valued functions
from Ω to R, such that f = g a.e. If f is measurable, then g is measurable.

Proposition 52 Let (Ω,A, µ) be a measure space. Let fn and f be extended real valued
functions from Ω to R. Assume that fn is measurable. Then

lim
n→∞

fn = f a.e. ⇒ f is measurable.

6 Integrability of functions

6.1 Integral of nonnegative measurable functions

Definition 53 (4.2) Let (Ω,A, µ) be a measure space and let f : (Ω,A) → (R,B) be a
nonnegative simple function with values α1, . . . , αr ∈ R. Define

Ak = f−1(αk), k = 1, . . . , r,

so that the sets Ak are measurable, pairwise disjoint, and the function f can be written as

f =
r∑

k=1

αk1Ak
.

The integral
∫
Ω fdµ of f over Ω with respect to µ, is defined by∫

Ω
fdµ =

r∑
k=1

αrµ(Ak).
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Remark: The integral
∫
Ω f dµ is often defined in different ways,∫

Ω
f(ω)dµ(ω),

∫
Ω
f(ω)µ(dω).

This notation will be used when several measures are considered simultaneouslu.

Proposition 54 (4.3) Let (Ω,A, µ) be a measure space. Let f, g : (Ω,A) → (R,B) be non-
negative simple functions and α ≥ 0. Then αf and f+g are also nonnegative simple functions
and

1.
∫
Ωαfdµ = α

∫
Ω fdµ, α > 0;

2.
∫
Ω(f + g)dµ =

∫
Ω fdµ+

∫
Ω gdµ;

3. f ≤ g ⇒
∫
Ω fdµ ≤

∫
Ω gdµ.

Corollary 55 (4.4) Let γk ≥ 0 and let Ck be measurable sets, k = 1, . . . , n. Then the
function f defined by

f =
n∑

k=1

γk1Ck

is a simple function and ∫
Ω
fdµ =

n∑
k=1

γkµ(Ck).

Definition 56 Let (Ω,A, µ) be a measure space and let the extended real-valued function
f : (Ω,A)→ (R,B) be measurable and nonnegative. Then the integral is defined by∫

Ω
f dµ :=

{∫
Ω
g dµ : 0 ≤ g ≤ f, g simple

}
∈ [0,∞]

Remark: It is clear that if (Ω,A, µ) is a measure space and E ∈ A, then∫
Ω
1Edµ = µ(E)

Corollary 57 Let (Ω,A, µ) be a measure space and let the extended real-valued function
f : (Ω,A) → (R,B) be measurable and nonnegative. Then the integral of f with respect to µ
over A ∈ A is ∫

A
f dµ =

∫
Ω
f · 1A dµ.

Lemma 58 Let (Ω,A, µ) be a measure space and let the extended real-valued function f :
(Ω,A) → (R,B) be measurable and nonnegative. Let fn : (Ω,A) → (R,B) be a sequence of
nonnegative simple functions such that fn ↑ f . Then∫

Ω
fn dµ ↑

∫
Ω
f dµ.
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Corollary 59 Let (Ω,A, µ) be a measure space and let (Ω,A′, µ′) be its completion. Let the
extended real-valued function f : (Ω,A) → (R,B) be measurable and nonnegative. Then, in
addition to f being measurable with respect to (Ω,A′), one has∫

Ω
f dµ =

∫
Ω
f dµ′,

and the equality is understood in [0,∞].

Proposition 60 Let (Ω,A, µ) be a measure space. Let the extended real-valued functions
f, g : (Ω,A)→ (R,B) be measurable and nonnegative and let a ≥ 0.

•
∫
Ω αf dµ = α

∫
Ω f dµ;

•
∫
Ω(f + g) dµ =

∫
Ω f dµ+

∫
Ω g dµ;

• f ≤ g ⇒
∫
Ω f dµ ≤

∫
Ω g dµ

Corollary 61 Let (Ω,A, µ) be a measure space and let the extended real-valued function
f : (Ω,A)→ (R,B) be measurable and nonnegative. Then

f = 0 a.e ⇔
∫
Ω
f dµ = 0

Corollary 62 Let (Ω,A, µ) be a measure space and let the extended real-valued functions
f, g : (Ω,A)→ (R,B) be measurable and nonnegative. Then

f = g (µ−)a.e ⇔
∫
Ω
f dµ =

∫
Ω
g dµ

Remark: What is means is that if we have a non continuous function, and the set
containing all the points of discontinuity have measure zero, then the integral is just the
volume described by the function continuous version of the function. Example, take the
following one dimensional case,

since µ({x ∈ Ω : f(x) ̸= g(x)}) = 0 then the integral are equal.

Corollary 63 Let (Ω,A, µ) be a measure space and let the extended real-valued function
f : (Ω,A)→ (R,B) be measurable and nonnegative. Then∫

Ω
f dµ <∞ ⇒ µ({ω ∈ Ω : f(ω) =∞}) = 0.
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6.2 Integrable functions

Theorem 64 An extended measurable real-valued function f : (Ω,A)→ (R,B) can be written
as the composition of the nonnegative measurable function f+ and f−.

Definition 65 Let (Ω,A, µ) be a measure space and let the extended real-valued function
f : (Ω,A)→ (R,B) be measurable. Then the integral is defined by∫

Ω
f dµ =

∫
Ω
f+ dµ−

∫
Ω
f− dµ,

if at least one of the integrals in the rhs is finite. The function f is said to be inegrable if both
integrals in the rhs are finite or, equivalently, if∫

Ω
|f | dµ <∞.

Proposition 66 Let (Ω,A, µ) be a measure space. Let the extended real-valued functions
f, g : (Ω,A)→ (R,B) be integrable, and let a ∈ R. Then αf and f + g are also integrable and

•
∫
Ω αf dµ = α

∫
Ω f dµ;

•
∫
Ω(f + g) dµ =

∫
Ω f dµ+

∫
Ω g dµ;

• f ≤ g ⇒
∫
Ω f dµ ≤

∫
Ω g dµ;

• |
∫
Ω f dµ| ≤

∫
Ω |f | dµ.

Proposition 67 Let (Ω,A, µ) be a measure space and let the extended real-valued functions
f, g : (Ω,A)→ (R,B) be measurable. If f is also integrable and f = g a.e. Then g is integral
and

∫
Ω g dµ =

∫
Ω f dµ.

Corollary 68 Let (Ω,A, µ) be a measure space and let the extended real-valued function
f : (Ω,A)→ (R,B) be integrable. Then

µ({ω ∈ Ω : |f(ω)| =∞}) = 0,

and there exists an integrable real-valued function g : (Ω,A)→ (R,B) such that

g = f a.e. and

∫
Ω
g dµ =

∫
Ω
f dµ.

Theorem 69 Let (Ω,A, µ) be a measure space and let (Ω,A′, µ′) be its completion. Then if
f is an extended integrable real-valued function from Ω to R, then f is also integrable with
respect to (Ω,A′, µ′).
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6.2.1 Integration with respect to Lebesgue measure

Remark: Any continuos functions f : Rd → R is Borel measurable, and hence Lebesgue
measurable.

Let cinsider the case d = 1. Let f : [a, b] → R ve continuous and a ≤ b. The set [a, b]
is provided with the Lebesgue σ-algebra of R. Then, the integral

∫
[a,b] f dµ is usually denoted

by ∫ b

a
f(t) dµ(t) quador

∫ b

a
f(t)dt.

Lemma 70 Let the real-valued function f : [a, b] → R be continuous, then f is Lebesgue
integrable.

• If the function F : [a, b]→ R is defined by

F (x) =

∫ x

a
f(t) dt, x ∈ [a, b],

then F is continuously differentiable on [a, b] and F ′ = f .

if the function F : [a, b]→ R is continuously differentiable on [a, b] and F ′ = f , then∫ b

a
f(t) dt = F (b)− F (a).

Corollary 71 Let the real-valued function γ : [a, b] → R be continuously differentiable with
γ′ > 0, and let the real valued function f ′[γ(a), γ(b)] → R be continuous. Then (f ◦ γ)γ′ is
Lebesgue integrable on [a, b] and∫ b

a
(f ◦ γ)(x)γ′(x) dx =

∫ γ(b)

γ(a)
f(y) dy.

7 Convergence Theorems

Theorem 72 Monotone Convergence Theorem Let (Ω,A, µ) be a measure space. Let
fn, n ∈ N, and f be nonnegative measurable extended real-valued functions on Ω, such that

fn(ω)→ f(ω), fn(ω) ≤ fn+1(ω), ω ∈ Ω.

Then

lim
n→∞

∫
Ω
fn dµ =

∫
Ω
f dµ.

Lemma 73 Let f : (a, b]→ R or f : [a, b)→ R be nonnegative and continuous functions with
primitive F . Then∫

(a,b]
f dµ = lim

α↘a
[F (b)− F (α)] or

∫
[a,b)

f dµ = lim
β↗b

[F (β)− F (a)],

respectively.
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Theorem 74 Fatou’s lemma Let (Ω,A, µ) be a measure space. Let fn, n ∈ N be nonnega-
tive measurable extended real-valued functions on Ω, then∫

Ω
(lim inf

n→∞
fn dµ ≤ lim inf

n→∞

∫
Ω
fn dµ.

Theorem 75 Dominated convergence theorem Let (Ω,A, µ) be a measure space. Let
fn, n ∈ N, and f be nonnegative measurable extended real-valued functions on Ω, and let
g : Ω→ [0,∞] be integrable extended real-valued function, such that

fn(ω)→ f(ω), |fn(ω)| ≤ g(ω), for almost all ω ∈ Ω.

Then fn and f are integrable and

lim
n→∞

∫
Ω
|fn − f | dµ = 0, lim

n→∞

∫
Ω
fn dµ =

∫
Ω
f dµ.

Proposition 76 Let (Ω,A, µ) be a measure space. Let fn be nonnegative measurable extended
real-valued functions on Ω, then∫

Ω

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
Ω
fn dµ.

Corollary 77 Let (Ω,A, µ) be a measure space and assume Ω =
⋃∞

n=1Ωn with disjoint sets
Ωn ∈ A. Let f be a nonnegative measurable extended real-valued function on Ω. Then∫

Ω
f dµ =

∞∑
n=1

∫
Ωn

f dµ.

8 Parameter dependent integrals

Theorem 78 Let (Ω,A, µ) be a complete measure space and let I ⊂ R be an open interval
with x0 ∈ I. Let f : I × Ω→ R be a real-valued function such that

• for every x ∈ I the function ω 7→ f(x, ω) is integrable;

• for almost all ω ∈ Ω the function x 7→ f(x, ω) is continuous at x0 ∈ I;

• there exits an integrable real-valued function g : Ω→ R such that for every x ∈ I

|f(x, ω)| ≤ |g(x)|

holds almost everywhere on Ω.

Then the real-valued function F : I → R defined by

F (x) =

∫
Ω
f(x, ω) dµ(ω), x ∈ I,

is continuous at x0 ∈ I.
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Theorem 79 Let (Ω,A, µ) be a complete measure space and let I ⊂ R be an open interval
with x0 ∈ I. Let f : I × Ω→ R be a real-valued function such that

• for every x ∈ I the function ω 7→ f(x, ω) is integrable;

• for almost all ω ∈ Ω the function x 7→ f(x, ω) is differentiable at x0 ∈ I;

• there exits an integrable real-valued function g : Ω→ R such that for every x ∈ I

|∂xf(x, ω)| ≤ |g(x)|

holds almost everywhere on Ω.

Then the real-valued function F : I → R defined by

F (x) =

∫
Ω
f(x, ω) dµ(ω), x ∈ I,

is differentiable at x0 ∈ I and

F ′(x0) =

∫
Ω
∂x|x0f(x, ω) dµ(ω).

9 Density and transformations of measures

Theorem 80 Let (Ω,A, µ) be a measure space and let the extended real-valued function h :
(Ω,A)→ (R,B) be nonnegative and measurable. Then λ defined by

λ(E) =

∫
E
h dµ, E ∈ A,

is a measure on A. Let f : (Ω,A) → (R,B) be a measurable extended real-valued function.
Then the following statements hold:

• If the function f is nonnegative, then∫
Ω
f dλ =

∫
Ω
fh dµ.

• The function f is integrable with respect to λ if and only if the function fh is integrable
with respect to µ, in which case the previous equation holds.

Remark: The function h is sometimes called the density of λ with respect to µ.

As already partially covered in the section Random Variables, we can have an induced mea-
sure.

Theorem 81 Let (Ω,A) and (Ω′,A′) be measurable spaces and assume that γ : (Ω,A) →
(Ω′,A′) is a measurable mapping. If µ is a measure on (Ω,A), then ν defined by

ν(B) = µ(γ−1(B)), B ∈ A′,

is a measure on (Ω′,A′). Let the extended real-valued function f : (Ω′,A′) → (R,B) be
measurable. Then the following statements hold.
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• If the function f is nonnegative, then∫
Ω′

f dν =

∫
Ω
(f ◦ γ) dµ.

• The function f is integrable with respect to ν if and only if the function f ◦γ is integrable
with respect to µ, in which case the previous equation holds.

10 Product measures

Definition 82 Let A1 be a σ-algebra on Ω1 and let A2 be a σ-algebra on Ω2. The σ-algebra
on Ω generated by

G := {A1 ×A2 : A1 ∈ A1, A2 ∈ A2},

is called the product σ-algebra A = A1 ⊗A2 on Ω1 ⊗ Ω2, so that A1 ⊗A2 = σ(G).

Remark: Note that for all A1, B1 ∈ A1 and A2, B2 ∈ A2:

(A1 ×A2) ∩ (B1 ×B2) = (A1 ∩B1)× (A2 ∩B2)

and that A1 ∩B1 ∈ A1 and A2 ∩B2 ∈ A2.

Definition 83 Let A be a subset of Ω = Ω1×Ω2. For ω1 ∈ Ω1 and ω2 ∈ Ω2 the sections Aω1

and Aω2 are defined as subsets of Ω2 and Ω1 respectively, by

Aω1 = {ω2 ∈ Ω2 : (ω1, ω2) ∈ Ω},

and

Aω2 = {ω1 ∈ Ω1 : (ω1, ω2) ∈ Ω}.

Proposition 84 Let A ∈ A1 ⊗A2. Then

1. ω1 ∈ Ω1 ⇒ Aω1 ∈ A2

2. ω2 ∈ Ω2 ⇒ Aω2 ∈ A1

Definition 85 Let f : Ω1 × Ω2 → R be an extended real-valued function. For ω1 ∈ Ω1 and
ω2 ∈ Ω2 the sections fω1 : Ω2 → R and fω2 : Ω1 → R are defined by

fω1(ω2) = f(ω1, ω2), ω2 ∈ Ω2,

and

fω2(ω1) = f(ω1, ω2), ω1 ∈ Ω1.

Proposition 86 Let f : (Ω1 × Ω2,A1 ⊗A1)→ (R,B) be an extended real-valued measurable
function. Then

1. for ω1 ∈ Ω1 the function fω1 : (Ω2,A2)→ (R,B) is measurable;

2. for ω2 ∈ Ω2 the function fω2 : (Ω1,A1)→ (R,B) is measurable.
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Remark: If f : Ω1 × Ω2 → R then it is straiforward to see that

(f+)ω1 = (fω1)
+, (f−)ω1 = (fω1)

−

Furthermore if we have two measure set (Ω1,A1, µ1) and (Ω2,A2, µ2), and we let A = A1 ×
A2 ∈ G, then

µ2(Aω1) = µ2(A2)1A1(ω1), ω1 ∈ Ω1

µ1(A
ω2) = µ1(A1)1A2(ω2), ω2 ∈ Ω2

Proposition 87 Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be σ-finite measure space and let A ∈
A1 ⊗A2. Then

1. the function ω1 7→ µ2(Aω1) is measurable with respect to A1;

2. the function ω2 7→ µ1(A
ω2) is measurable with respect to A2.

Theorem 88 Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be σ-finite measure space and let (Ω1×Ω2,A1⊗
A2) be the corresponding measurable product space. Then

µ(A) =

∫
Ω1

µ2(Aω1)µ1(dω1) =

∫
Ω2

µ1(A
ω2)µ2(dω2), A ∈ A1 ⊗A2,

defines a σ-finite measure µ = µ1⊗µ2 on A1⊗A2. Moreover µ = µ1⊗µ2 is the only measure
on A1 ⊗A2 which satisfies

µ(A1 ×A2) = µ1(A1)µ2(A2), A1 ∈ A1, A2 ∈ A2.

Corollary 89 Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be σ-finite measure space with product mea-
sure µ1 ⊗ µ2, and let A ∈ A1 ⊗A2. Then the following statements are equivalent:

• (µ1 ⊗ µ2)(A) = 0;

• µ2(Aω1) = 0 for µ1-almost all ω1Ω1;

• µ1(A
ω2) = 0 for µ2-almost all ω2Ω2

10.1 Fubuni-Tonelli Theorems

Theorem 90 Fubini-Tonelli Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be σ-finite measure space.
Assume that f : (Ω1 × Ω2,A1 ⊗ A2) → (R,B) us a measurable nonnegative extended real-
valued function. Then

1. the function ω1 7→
∫
Ω2

fω1dµ2 is nonnegative and A1-measurable;

2. the function ω2 7→
∫
Ω1

fω2dµ1 is nonnegative and A2-measurable.

Moreover, ∫
Ω1×Ω2

fd(µ1 ⊗ µ2) =

∫
Ω1

(∫
Ω2

fω1dµ2

)
dµ1(ω1)

=

∫
Ω2

(∫
Ω1

fω2dµ1

)
dµ2(ω2)
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Theorem 91 Fubini-Tonelli Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be σ-finite measure space.
Assume that f : (Ω1 × Ω2,A1 ⊗ A2) → (R,B) us a measurable nonnegative extended real-
valued function. Then the set

F1 = {ω1 ∈ Ω1 : fω1 not integrable w.r.t µ2}

has µ1-measure 0, and the set

F2 = {ω2 ∈ Ω2 : fω2 not integrable w.r.t µ1}

has µ2-measure 0. Moreover,∫
Ω1×Ω2

fd(µ1 ⊗ µ2) =

∫
Ω1\F1

(∫
Ω2

fω1dµ2

)
dµ1(ω1)

=

∫
Ω2\F2

(∫
Ω1

fω2dµ1

)
dµ2(ω2)

10.2 Product measures on Rp × Rq

Proposition 92 The product of Borel σ-algebra Bp ⊗ Bq satisfies

Bp ⊗ Bq = Bp+q.

Moreover, the product measure µp ⊗ µq on Bp ⊗ Bq is well-defined and satisfies

µp ⊗ µq = µp+q

where µp+q is Lebesgue measure on Bp+q.

11 Space of Integrable functions

This section used concept from function analysis. To optimize this summary I will omit
the definition of semi-norm, Banach spaces and the relatives theorems of convergences of
sequences.

Definition 93 Let Ω,A, µ) be a measure space. The integrable functions on Ω form a linear
space L1(Ω,A, µ) and clearly ∥f∥ =

∫
Ω |f |dµ provides a semi-norm on that space.

Lemma 94 Let α, β ∈ R be nonnegative and let 1 ≤ p <∞ and 1/p+ 1/q = 1. Then

α1/pβ1/q ≤ α

p
+

β

q
,

and (
α+ β

2

)p

≤ 1

2
(αp + βp)

Definition 95 Let (Ω,A, µ) be a measure space and let 1 ≤ p ≤ ∞. For p < ∞ the space
Lp(Ω) is the set of all measurable complex-valued functions f for which∫

Ω
|f |pdµ <∞.
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Furthermore, one defines for f ∈ Lp(Ω)

∥f∥p =
(∫

Ω
|f |pdµ

)1/p

.

For p =∞ the space L∞(Ω) is the set of all measurable complect-valued functions f for which
there exists c ≥ 0 such that

|f(ω)| ≤ c a.e.

Furthermore, one defines for f ∈ L∞(Ω)

∥f∥∞ = inf{c ≥ 0 : |f(ω)| ≤ c a.e.}.

Lemma 96 The space Lp(Ω), 1 ≤ p ≤ ∞, is a linear space.

Theorem 97 Holder’s Inequality Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. If f ∈ Lp(Ω) and
g ∈ Lq(Ω), then fg ∈ L1(Ω) and

∥fg∥1 ≤ ∥f∥p∥g∥q.

In particular, for p = 2 and q = 2 this is the Cauchy-Schwarz inequality.

Corollary 98 Let 1 ≤ p ≤ ∞ and assume that µ(Ω) = 1. If f ∈ Lp(Ω) then f ∈ L1(Ω) and

∥f∥1 ≤ ∥f∥p.

Theorem 99 Mikowski’s inequality Let 1 ≤ p ≤ ∞. The space Lp(Ω) with ∥ · ∥p is a
semi-normed linear space. In particular for f, g ∈ Lp(Ω)

∥f + g∥p ≤ ∥f∥p + ∥g∥p

A function f ∈ Lp(Ω) has ∥f∥p = 0 if and only if f = 0 almost everywhere.

11.1 Completeness

Theorem 100 Let (Ω,A, µ) be a measure space and let 1 ≤ p < ∞. Let fn ∈ Lp(Ω),
n ∈ N, and assume that the series sum∞

k=1fk converges absolutely. Then the series sum∞
k=1fk

converges in Lp(Ω), i.e., there exists a function f ∈ Lp(Ω), such that

∞∑
k=1

fk = f,

where the series converges in Lp(Ω). In addition, the series converges pointwise almost ev-
erywhere.

Theorem 101 Let 1 ≤ p ≤ ∞. The semi-normed linear space Lp(Ω) is complete.

Corollary 102 Let 1 ≤ p < ∞. Each Cauchy sequence in Lp(Ω) contains a subsequences
which converges pointwise almost everywhere.

Let N (µ) be the closed linear subspace of all elements in Lp(Ω, µ) whose semi-norm is
zero.

Theorem 103 The natural embedding from Lp(Ω, µ)/N (µ) into Lp(Ω, µ′)/N (µ′) is surjec-
tive.
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11.2 Dense linear subsets

Theorem 104 Let (Ω,A, µ) be a measure space and let 1 ≤ p ≤ ∞. The simple functions
which belongs to Lp(Ω) are dense in Lp(Ω).

Let Cc(Rd) be the collection of all complex-valued functions on Rd which are continuous
and which have compact support. It is clear that Cc(Rd) is a linear space and that it is
contained in Lp(Rd) for 1 ≤ p ≤ ∞.

Theorem 105 The space Cc(Rd) is dense in Lp(Rd), 1 ≤ p ≤ ∞.

Corollary 106 Let f ∈ Lp(Rd), 1 ≤ p <∞, then

lim
x→0

∫
Rd

|f(x+ t)− f(t)|pdµ(t) = 0
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